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1 Idea

For a semi-simple Lie algebra g, the affine Lie algebra ĝκ is a central extension of its loop
space. Its vacuum representation Vg,κ has a structure of a vertex algebra.

Now in the semi-simple case, we saw a definition of the corresponding finite W-algebra

W (g) = (U (g) /U (g) (x− χ (x)))n = C∗
Lie

(
n, CLie

∗ (n⊗−χ)⊗ χ
)

It is an associative algebra with a filtration who’s associated graded is the Poisson algebra
of functions on f+ b/N.

This is an associative algebra describing ”g-representations for which the n action is given
by a character χ.

We want an affine analogue. The main idea to have in mind is that our semi-classical
(or Poisson) objects are jet spaces, and their quantizations are loop spaces. We view the
polar part as acting by derivations using the duality between k ((t)) /k[[t]] and k[[t]]dt given
by the residue pairing. In particular, they are non-commutative. As we saw last week,
a convenient tool for working with objects like that is the language of vertex / chiral /
factorization algebras.

In particular, the Kac-Moody vertex algebra Vg,κ has as an underlying vector space the
level κ vacuum representation of ĝ, and there’s a canonical isomorphism

Vg,κ -mod ≃ ĝ -modκ

In comclusion, the object we’re interested in is of the form Wg,κ ∼ C
∗
Lie (n ((t)) ,Vg,κ ⊗ χ).

We will then want to prove this complex is concentrated in degree 0 and the result inherits a
structure of a vertex algebra. We’ll then want a filtration on Wg,κ with an associated graded
being a Poisson vertex algebra who’s underlying commutative algebra is that of functions
on f+ b[[t]]/N[[t]].

2 Tate Lie Algebras

The problem here is that we need to make sense of the expression C∗
Lie (n ((t)) ,−): n ((t))

is a colimit of a limit of finite dimensional Lie algebras. We can extend cohomology to a
continuous functor out of ind-finite Lie algebras, and homology for pro-finite. Here we have
a Tate vector space: an ind-pro-finite Lie algebra.
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The formalism of semi-infinite cohomology is supposed to deal with those problems. It
should be thought of as a combination of cohomology for the colimit direction n[[t]] and
homology for the limit direction n ((t)) /n[[t]].

First, we need to make sense of the input category itself n ((t)). There is a more general
definition that works for g ((t)), but here there’s a shorter one: Let ni = Adt−iρ̌ n[[t]]. Then
ni = limjAdt−iρ̌ n[[t]]/tjn[[t]] =: limj n

j
i is a profinite Lie algebra, and we define

ni -mod = colimj n
j
i -mod

n ((t)) =
⋃
i ni is a union of open profinite Lie algebras, and we define

n ((t)) -mod = lim
i
ni -mod

By passing to left adjoints Ind
ni2
ni1

we can also write

n ((t)) -mod = colimi ni -mod

Now for the definition of semi-infinite cohomology, we have functors

C∗
Lie (ni; (−)⊗ det (ni/n0)) : ni -mod → Vect

Define
C

∞
2 (n ((t)) , n[[t]],−) = colimC∗

Lie (ni; (−)⊗ det (ni/n0))

3 Vertex Algebra Structure

Assuming M ∈ n ((t)) -mod♡, we can compute semi-infinite cohomology using the usual
resolution. That is, C• (n[[t]],M) ≃M⊗

∧• n[[t]]∗. Then for each i, we have

M⊗
∧•

n[[t]]∗ ⊗ det (ni/n0) ≃M⊗
∧•

n[[t]]∗ ⊗
∧•

(ni/n0)
∗ ⊗ det (ni/n0)

≃M⊗
∧•

n[[t]]∗ ⊗
∧•

(ni/n0)

Taking colimit, we get the usual complex computing semi-infinite cohomology

C
∞
2 (n ((t)) , n[[t]],M) ≃M⊗

∧•
n[[t]]∗ ⊗

∧•
n ((t)) /n[[t]]

Let χ be the character

n ((t)) → n/[n, n] ((t))
∑
−→ C ((t))

Res−−→ C

In particular, in our case we get the complex

C
∞
2 (n ((t)) , n[[t]],Vg,κ ⊗ χ) = Vg,κ ⊗ χ⊗

∧•
n[[t]]∗ ⊗

∧•
n ((t)) /n[[t]]

Theorem 1. C
∞
2 (n ((t)) , n[[t]],Vg,κ ⊗ χ) is concentrated in cohomological degree zero.



Denote
Wg,κ := H

0C
∞
2 (n ((t)) , n[[t]],Vg,κ ⊗ χ)

Theorem 2. Wg,κ has a structure of a vertex algebra

The proof idea is similar to the finite case: We give the semi-infinite complex the structure
of a vertex algebra, then show that the differential is given by the action of a specific element,
hence respects the vertex algebra structure. In particular, the cohomology is a vertex algebra.

We already have a vertex algebra structure on Vg,κ. It remains to give a vertex algebra
structure for the other component, and then take the tensor vertex algebra.

Choose a basis of root vectors {eα}α∈∆+ . Then
∧• n[[t]]∗ is generated by elements of the

form ψ∗
α,n = e∗α ⊗ tn for n ≥ 0, and

∧
n ((t)) /n[[t]] by elements of the form ψα,n = eα ⊗ t−n

for n > 0.
Write

∧
n =

∧
n[[t]]∗ ⊗

∧
n ((t)) /[[t]].

Define fields

ψα (z) = Y (ψα,−1, z) =
∑
n∈Z

ψα,nz
−n−1, ψ∗

α (z) = Y (ψ
∗
α,−1, z) =

∑
n∈Z

ψ∗
α,nz

−n

where the ψα,n, ψ
∗
α,n actions are given by

[ψα,n, ψβ,m] = [ψ∗
α,n, ψ

∗
β,m], [ψα,n, ψ

∗
β,m] = δα,βδm,−n (3.1)

Define a translation operator

T |0⟩ = 0, [T,ψn,α] = −nψ−n−1,α, [T,ψ
∗
α,n] = − (n− 1)ψ∗

n−1,α

Finally, define a Z+-grading is given by degψn,α = degψ∗
n,α = −n.

The reconstruction theorem for vertex algebras says in order to describe a vertex algebra
structure on a vector space, it is enough to describe the fields corresponding to a ”PBW ba-
sis”. More precisely, if we have a collection of vectors v1, . . . , vn and fields vi (z) =

∑
vi,nz

−n−1

satisfying locality etc., such that the coefficients vi,n give a PBW basis for V , then there is
a unique vertex algebra structure on V extending vi (z). For example:

Y (vi,−1vj,−1, z) =: vi (z) vj (z) :, Y
(
v2i,−1, z

)
= ∂zvi (z)

Lemma 1. (
∧

n, Y (−, z) , T, |0⟩) is a vertex operator algebra.

By the reconstruction theorem, we only need to verify locality for ψα (z) , ψ
∗
β (z), i.e.

that the commutator of any two of those fields is supported on the diagonal. Indeed, by the
commutation relations in 3.1, we have

[ψα (z) , ψβ (z)] = [ψ∗
α (z) , ψ

∗
β (z)] = 0, [ψα (z) , ψ

∗
β (z)] = δα,βδ (z−w)



4 Filtrations and Poisson Vertex Algebras

Recall: A commutative vertex algebra is one in which all commutators vanish. The category
of commutative vertex algebras is equivalent to that of differential commutative algebras:
For (R, T) a differential algebra, define

Y (a, z) = exp (zT)a

Example 1. Let R be a commutative algebra. Then JR is a commutative differential algebra,
with differential given by the usual derivative of polynomials.

Definition 1. A Poisson vertex algebra is a commutative vertex algebra (V, |0⟩ , T, Y) equipped
with an additional operation

{−,−} : V ⊗ V → z−1V[[z−1]]

satisfying axioms similar to that of vertex operations, and all Fourier coefficients of {v,w} =∑
n≥0 anz

−n−1 are derivations of the commutative product.

Example 2. Let (R, {−,−}) be a Poisson algebra. Since JR is freely generated by R as a
differential algebra, JR has a unique structure of a vertex Poisson algebra extending {−,−}.

Definition 2. An increasing (good) filtration on a vertex algebra V is a filtration F•V on V
such that

FpV(n)F
qV ⊂ Fp+qV

for each n and
FpV(n)F

qV ⊂ Fp+q−1V

for n ≥ 0.

Example 3. (Li’s increasing filtration) Let V be a conformal vertex algebra, so that it has
a decomposition into eigenspaces of L0 = x∂x:

V =
⊕

V∆

Let
FpV = span{ar(−nr−1) · · ·a

1
(−n1−1)

|0⟩ : ni ≥ 0,
∑

∆ai ≤ p}

Then F•V is a good filtration on V.

Theorem 3. For a filtered vertex algebra F•V, the associated graded gr• V is naturally a
vertex Poisson algebra.

Example 4. In the case of Vg,κ, Li’s filtration agrees with the usual PBW filtration, and
gr•Vg,κ ≃ C[Jg∗].



5 BRST reduction

Classical BRST reduction realizes the construction

Wfin
g = C∗ (n, C∗ (n, U (g)⊗−χ)⊗ χ)

as the cohomology of a single complex, who’s differential is given by the adjoint action of a
certain element. Explicitly, we start with the double resolution C (g) = U (g)⊗

∧
n∗ ⊗

∧
n.

We can describe the n module structure on
∧

n∗ ⊗
∧
n through identifying the last with the

underlying vector space for the Clifford algebra Cl (n⊕ n∗) associated with the evaluation
pairing. We then have a Lie algebra homomorphism n → Cl (n⊕ n∗) given by

ρ : xα 7→ ∑
[xα, xβ]x

∗
β

which gives the representation. The n-algebra structure on the complex C (g) is then given
by

θ (x) = (µ∗ (x) − χ (x))⊗ 1+ 1⊗ ρ (x)

The last can be written as the adjoint action of the element

Q =
∑
α

θ (xα)⊗ x∗α

Using the fact that Q is odd, we get adQ2 = 0. In particular, we get (C (g) , adQ) is a
complex computing finite W-algebras. Finally, with respect to the Kazhdan grading adQ
will have degree zero, and so the associated graded of this complex will compute the Poisson
algebra C[S]. In particular, since we know that the associated graded is concentrated in
degree zero, we get the same result for the quantized complex (using a spectral sequence
argument).

To generalize that to the affine case, we simply take the corresponding fields: Let

Q (z) =
∑
α

θ (ψα (z))⊗ψ∗
α (z) =

∑
n

Q(n)z
−n−1

Its residue is Q(0), and the complex
(
Vg,κ ⊗

∧
n, adQ(0)

)
computes semi-infinite cohomology.

Introduce the Kazhdan grading:

degKK xα,n = degKKψα,n = α (ρ̌) − n, degKKψ∗
α,n = −α (ρ̌) − n

We get another filtration on the vertex algebra Vg,κ, and with respect to this filtration the
operator Q(0) has degree zero. However, there is a price: The new filtration is not bounded
below.

6 Computation of the Semi-infinite Complex

Consider first semi-infinite cohomology applied to the associated graded.

Proposition 1. C
∞
2 (n ((t)) , n[[t]], grVg,κ ⊗ χ) ≃ C[JS].



Proof. Just as in the finite case, we first take homology in the n ((t)) /n[[t]]-direction. We
have a moment map Jµ : Jg∗ → Jn∗ and Lie algebra homology here is the restriction to
Jµ−1 (χ). Since it is defined by a regular sequence, it is concentrated in cohomological degree
0. Then we have a decomposition

Jµ−1 (χ) ≃ JN× JS

from which we deduce that the cohomology

C∗ (n[[t]],C[Jµ−1 (χ)]
)
≃ C∗ (n[[t]], N[[t]])⊗ C[JS] ≃ C[JS]

is concentrated in cohomological degree 0.

We would then want to use that to compute the semi-infinite cohomology of Vg,κ itself.
However, the Kazhdan filtration is not bounded below, and so the corresponding spectral
sequence may not converge. The standard solution to that is to find a quasi-isomorphic
subcomplex which is bounded below.

Here’s the general idea: We can extend the Lie algebra map θ : n → C (g) to a map
θ̃ : g → C (g) by the same formula, and its restriction to b− is a Lie algebra homomorphism.
We can do the same in the affine case, and the result gives morphisms of vertex algebras

Vb−,κb ⊗ Vn → Vg,κ ⊗
∧

n

We decompose Vg,κ⊗
∧

n into two complexes, one generated by the image of n and ψα (z)
and the other by b− and ψ∗

α. One then shows that the first complex has cohomology C.
Elements of the second complex only have positive KK degree, and so the spectral sequence
converges and we’re done.

7 Zhu’s Algebra

Finally, one can recover the finite case from the affine one using Zhu’s algebra:

Proposition 2. Zhu (Wg,κ) = Wfin
g .

Proof. We already know Zhu (Vg,κ) ≃ U (g) and Zhu (
∧

n) ≃ Cl (n⊕ n∗), and so the Zhu
algebra of the vertex algebra computing semi-infinite cohomology is the Poisson algebra
computing finiteW-algebras. Furthermore the operatorQ(0) is compatible with the operation
defining Zhu’s algebra, and so commutes with taking cohomology.

To summarize, we have the following diagrams:

Wg,κ C[JS]

Wfin
g,κ C[S]

gr

Zhu

gr

Zhu



analogous to the diagram

Vg,κ C[Jg∗]

U (g) C[g∗]

gr

Zhu

gr

Zhu
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