Semi Infinite Cohomology
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1 Idea

For a semi-simple Lie algebra g, the affine Lie algebra @ is a central extension of its loop
space. Its vacuum representation Vg has a structure of a vertex algebra.
Now in the semi-simple case, we saw a definition of the corresponding finite W-algebra

W(g) = (U(g) /U(g) (x —x (x))" = Cise (n, CH* (n® —x) ® X)

It is an associative algebra with a filtration who’s associated graded is the Poisson algebra
of functions on f + b/N.

This is an associative algebra describing ” g-representations for which the n action is given
by a character x.

We want an affine analogue. The main idea to have in mind is that our semi-classical
(or Poisson) objects are jet spaces, and their quantizations are loop spaces. We view the
polar part as acting by derivations using the duality between k ((t)) /k[[t]] and k[[t]]dt given
by the residue pairing. In particular, they are non-commutative. As we saw last week,
a convenient tool for working with objects like that is the language of vertex / chiral /
factorization algebras.

In particular, the Kac-Moody vertex algebra V. has as an underlying vector space the
level k vacuum representation of g, and there’s a canonical isomorphism

Vg« -mod ~ g-mod,

In comclusion, the object we're interested in is of the form Wy ~ C;, (n ((t)), Vg ®%).
We will then want to prove this complex is concentrated in degree 0 and the result inherits a
structure of a vertex algebra. We’ll then want a filtration on Wy with an associated graded
being a Poisson vertex algebra who’s underlying commutative algebra is that of functions

on f+ b[[tl]/N[[t]].

2 Tate Lie Algebras

The problem here is that we need to make sense of the expression Cj;, (n((t)),—): n((t))
is a colimit of a limit of finite dimensional Lie algebras. We can extend cohomology to a
continuous functor out of ind-finite Lie algebras, and homology for pro-finite. Here we have
a Tate vector space: an ind-pro-finite Lie algebra.



The formalism of semi-infinite cohomology is supposed to deal with those problems. It
should be thought of as a combination of cohomology for the colimit direction n[[t]] and
homology for the limit direction n ((t)) /n[[t]]

First, we need to make sense of the input category itself n ((t)). There is a more general
definition that works for g ((t)), but here there’s a shorter one: Let n; = Ad;— n[[t]]. Then
n; = limj Ad—» n[[t]]/ tn[t]] = lim; ni is a profinite Lie algebra, and we define

n;-mod = colim; ni—mod
n((t)) = J; ni is a union of open profinite Lie algebras, and we define

n((t))-mod = lim n; -mod

By passing to left adjoints Indzz we can also write
n((t)) -mod = colim; n; -mod
Now for the definition of semi-infinite cohomology, we have functors
Clio (ni; (—) ® det (ni/np)) : ny-mod — Vect

Define

~Ig

C2 (n((t)), nlltll, =) = colim Cr;, (n; (=) @ det (ni/no))

3 Vertex Algebra Structure

Assuming M € n((t))-mod”, we can compute semi-infinite cohomology using the usual
resolution. That is, C* (n[[t]l, M) ~ M ® A°*nl[[t]]*. Then for each i, we have

M@ A0l @ det (ni/no) =M ® A\nlit]" @ \” (ni/n0)” @ det (/o)

~Me A\l © A (n/mo0)

Taking colimit, we get the usual complex computing semi-infinite cohomology

C% (n((1),nlt],M) = M Anlltl" ® An(

Let x be the character

n (1) = n/ln,n] (1)) = C((1) =5 C
In particular, in our case we get the complex
(0 (1)), nllt], Vo @ %) = Vou ®x ® A\l ® A\'n

Theorem 1. CZ (n((t)) ynlltl], Vg« ® ) is concentrated in cohomological degree zero.



Denote

Wi = HCT (n (1)), nllt]], Vo @ )
Theorem 2. W, has a structure of a vertex algebra

The proof idea is similar to the finite case: We give the semi-infinite complex the structure
of a vertex algebra, then show that the differential is given by the action of a specific element,
hence respects the vertex algebra structure. In particular, the cohomology is a vertex algebra.

We already have a vertex algebra structure on Vg .. It remains to give a vertex algebra
structure for the other component, and then take the tensor vertex algebra.

Choose a basis of root vectors {ea}(xeA + Then /\' [t]]* is generated by elements of the
form P}, = e; @ t" forn > 0, and An ((t)) /nllt]] by elements of the form s = e, @ t™
for n > 0.

Write A\, = Anllt]* ® An( [t]].

Define fields

ll) ( ) 1l)oc, 1HZ Zq)ocnz_n 1) :c( ): oc _HZ Zwocn

nez nez

where the Py n, g, actions are given by

N)oc,n)lbﬁ,m] — N)Z,mll)?;,m]» [lboc,nylbam] - 6oc,ﬁém,fn (31>

Define a translation operator

T ’O> = 0, [T, Ibn,oc] = _Tubfnfhoc) [T) ll)ll,n] =—(n— 1)11)71 Tx

Finally, define a Z,-grading is given by degy o = deg )y, , = —1.

The reconstruction theorem for vertex algebras says in order to describe a vertex algebra
structure on a vector space, it is enough to describe the fields corresponding to a "PBW ba-
sis”. More precisely, if we have a collection of vectors vy, ..., v, and fields v; (z) = Y viz ™!
satisfying locality etc., such that the coefficients v;, give a PBW basis for V, then there is
a unique vertex algebra structure on V extending v; (z). For example:

Y (vi vy 1,2) = vi (2) v (2) 5, Y (Viz,_nl) = 0,v; (z)
Lemma 1. (A, Y (—,2),T,[0)) is a vertex operator algebra.

By the reconstruction theorem, we only need to verify locality for V4 (2),1} (2), ie
that the commutator of any two of those fields is supported on the diagonal. Indeed, by the
commutation relations in we have

W (), (2)] = g, (2) , W5 (2)] = 0, [ (2], g (2)] = B0 (z — W)



4 Filtrations and Poisson Vertex Algebras

Recall: A commutative vertex algebra is one in which all commutators vanish. The category
of commutative vertex algebras is equivalent to that of differential commutative algebras:
For (R, T) a differential algebra, define

Y (a,z) =exp(zT)a

Example 1. Let R be a commutative algebra. Then JR is a commutative differential algebra,
with differential given by the usual derivative of polynomials.

Definition 1. A Poisson vertex algebra is a commutative vertex algebra (V,|0), T,Y) equipped
with an additional operation

{(——}: VeV -z V[z ]

satisfying axioms similar to that of vertex operations, and all Fourier coefficients of {v,w} =
ano anz ™" are derivations of the commutative product.

Example 2. Let (R,{—,—}) be a Poisson algebra. Since JR is freely generated by R as a
differential algebra, JR has a unique structure of a vertex Poisson algebra extending {—,—}.

Definition 2. An increasing (good) filtration on a vertex algebra V is a filtration F*V on V
such that
FpV(n)qu C Fp+qV

for each m and
PPV FIV C oty

form > 0.

Example 3. (Li’s increasing filtration) Let V be a conformal vertex algebra, so that it has
a decomposition into eigenspaces of Ly = x0x:

vz@vA

FPV = span{ai_,, ¢ - az_m_]) 0) : ny > 0, Z Ay < p}
Then F*V is a good filtration on V.

Let

Theorem 3. For a filtered vertex algebra F*V, the associated graded gr®V 1is naturally a
vertex Poisson algebra.

Example 4. In the case of Vg, Li’s filtration agrees with the usual PBW filtration, and
gr* Vg« >~ ClJg*].



5 BRST reduction
Classical BRST reduction realizes the construction
Wit = C* (n, Ci (n, U (g) © —x) @ )

as the cohomology of a single complex, who’s differential is given by the adjoint action of a
certain element. Explicitly, we start with the double resolution C (g) = U (g) ® An* ® An.
We can describe the n module structure on A n* ® A n through identifying the last with the
underlying vector space for the Clifford algebra Cl(n @ n*) associated with the evaluation
pairing. We then have a Lie algebra homomorphism n — Cl (n & n*) given by

PiXy Z[thaxﬁ]xg

which gives the representation. The n-algebra structure on the complex C (g) is then given
by
0(x) =X —-xx))@T+T®p(x)

The last can be written as the adjoint action of the element

Q:ZG(X“)G@x;

Using the fact that Q is odd, we get ad Q* = 0. In particular, we get (C(g),ad Q) is a
complex computing finite W-algebras. Finally, with respect to the Kazhdan grading ad Q
will have degree zero, and so the associated graded of this complex will compute the Poisson
algebra C[8]. In particular, since we know that the associated graded is concentrated in
degree zero, we get the same result for the quantized complex (using a spectral sequence
argument).

To generalize that to the affine case, we simply take the corresponding fields: Let

Qz) =) 0(Vu(z) @WV(z) =) Quz ™"
04 n
Its residue is Qp), and the complex (Vg ® A,,ad Q(o)) computes semi-infinite cohomology.
Introduce the Kazhdan grading:
deg™™ Xon = deg™  Pyn = o (p) — 1, deg" Py = —x (p) —n

We get another filtration on the vertex algebra V., and with respect to this filtration the
operator Qo) has degree zero. However, there is a price: The new filtration is not bounded
below.

6 Computation of the Semi-infinite Complex

Consider first semi-infinite cohomology applied to the associated graded.

Proposition 1. C% (n((t)),n[[tl],gr V,, ® x) ~ C[J§].



Proof. Just as in the finite case, we first take homology in the n((t)) /n[[t]]-direction. We
have a moment map Ju : Jg* — Jn* and Lie algebra homology here is the restriction to
Ju™ (x). Since it is defined by a regular sequence, it is concentrated in cohomological degree
0. Then we have a decomposition

Jut(x) =N xJ8
from which we deduce that the cohomology
C* (nlltl], COu " (x)1) = C* (n[[t]], N[[t]) ® C[J8] ~ C[J8]

is concentrated in cohomological degree 0. O]

We would then want to use that to compute the semi-infinite cohomology of V  itself.
However, the Kazhdan filtration is not bounded below, and so the corresponding spectral
sequence may not converge. The standard solution to that is to find a quasi-isomorphic
subcomplex which is bounded below.

Here’s the general idea: We can extend the Lie algebra map 6 : n — C(g) to a map
0 :g — C(g) by the same formula, and its restriction to b~ is a Lie algebra homomorphism.
We can do the same in the affine case, and the result gives morphisms of vertex algebras

Vo, @ Vo = Vi ® /\_

We decompose Vg ® A, into two complexes, one generated by the image of n and P4 (z)
and the other by b~ and {}. One then shows that the first complex has cohomology C.
Elements of the second complex only have positive KK degree, and so the spectral sequence
converges and we're done.

7 Zhu’s Algebra

Finally, one can recover the finite case from the affine one using Zhu’s algebra:
Proposition 2. Zhu (W, ) = Wgn,

Proof. We already know Zhu (Vg,) ~ U(g) and Zhu(A,) ~ Cl(n @ n*), and so the Zhu
algebra of the vertex algebra computing semi-infinite cohomology is the Poisson algebra
computing finite W-algebras. Furthermore the operator Q) is compatible with the operation
defining Zhu’s algebra, and so commutes with taking cohomology. O]

To summarize, we have the following diagrams:

Wy —— C[J8]

lZ hu thu

Win £ C[s]



analogous to the diagram
Vo —— ClJg"]

thu thu

U(g) —=— Clg*]
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